
An Algorithm for Graph Isomorphism Based on
Path-length Numbers

Lijun Tian1, a
1Information Technology Department, Hunan University of Finance and Economics. No.139,

Fenglin 2nd Road, Changsha, 410205, China
atianlijun@hufe.edu.cn

Keywords: graph isomorphism, algorithm, path-length number.

Abstract: This paper proposed an algorithm for graph isomorphism based on path-length
number (AGIPN). AGIPN used Length-L path numbers as partition metrics which could
divide not similar vertices into trivial cells easily. For those similar vertices, AGIPN took a
dynamic mapping procedure. AGIPN was tested on graphs, such as random connected
graphs, pseudo random k-regular graphs, regular rings, and regular 2D meshes. The results
indicate that the time requirement of AGIPN do not increase exponentially with the graph
size of all these types.

1. Introduction

The graph isomorphism (GI) is of interest in a variety of different pattern recognition contexts [1,2],
and structure comparison and identification of complex networks[3].

The subgraph isomorphism is proved to be a NP-complete problem [4,5], while it is still an open
question if also GI is a NP-complete problem[1,4]. Therefore, many algorithms of GI have been
proposed to solve this problem, such as McKay's Nauty algorithm [6], Ullmann[7], VF[8], etc.

All existed algorithms for GI are efficiency for some types of graphs, but their time requirements
increase exponentially with the size of the graphs in the worst case [2].

In this paper, we propose a new algorithm which partition the vertices by path numbers, and use a
dynamic mapping method for those similar vertices.

2. Definitions

Here, we consider only undirected graphs without parallel edges and loops, i.e., undirected simple
graph, as showed in Fig.1. Definitions are mainly referenced from graph theory [4] and practical
graph isomorphism [6].

Definition 1: a graph G is an ordered pair (V (G),E(G)) consisting of a set V (G) of vertices and a
set E(G), together with an incidence functionψG that associates with each edge of G an unordered
pair of vertices of G.

Definition 2: two graphs G and H are isomorphism, if there is a bijection θ: V (G)→V (H) which
preserves adjacency (that is, the vertices u and v are adjacent in G if and only if their imagesθ(u)
andθ(v) are adjacent in H), written G≌H, else written G!≌H.

2018 2nd International Conference on Computer Science and Intelligent Communication (CSIC 2018)

Published by CSP © 2018 the Authors 297

There is G≌H in Fig.1. In fact, G and H in Fig.1 all are a same famous graph – Peterson Graph,
of course they are isomorphism.

It is not difficult to validate the map (V1V2V3V4V5V6V7V8V9V10→U1U2U3U7U6U5U9
U10U4U8) is isomorphism.

Fig.1 graphs of isomorphism

Definition 3: an automorphism of a graph is an isomorphism of the graph to itself.
For example, there is an automorphism of G in Fig.1 (V1V2V3V4V5V6V7V8V9V10→V4V3V2V8

V10V7V5V9V1V6).
Definition 4: a partition of graph G is a set of disjoint non-empty subsets of V(G).
Letπ=(π1,…πr) is such a partition. The elements of a partition, πi(1≤i≤r), are usually called its

cells. A trivial partition is a partition with only one cell, e.g., partition the Peterson Graph by vertex
degree would get a trivial partition. A cell with only one vertex is called as trivial cell, and if all
elements of a partition all are trivial cell, the partition is a discrete one.

Definition 5: vertices u and v of a graph G are similar, if there is an automorphismαwhich maps u
to v, written u∽v.

All vertices of graph G and H in Fig.1 are similar.

3. AGIPN

3.1 Basic ideas

The goal of AGIPN is to find the isomorphism of two graphs G and H. If they are, give out a
map, or they are not.

The basic process of AGIPN is as follows:
1) Label vertices of G and H in a random way, then we get two unsorted sequence {1,…n}, where

n is the number of the vertices.
2) Partition the two sequences in a same method which is independent of labeling, such as

sequence of path-length number, and sorted the partition.
3) If vertices in any cell of the partition are not similar, refine the partition.
4) Check the partition by the sorted order, if elements in a cell are similar, choose any one of

them as the first element and refine all other unsorted cells. Continues according to this way
until all cells are trivial.

5) Then we get two sorted sequence <i1,…,in> and <j1,…,jn>, and compare the two graphs by
these two sequences. They are isomorphism if they map each other in this way, or else not.

3.2 Partition

As an example, we use graph G in Fig.1 to illustrate the process of AGIPN. AGIPN use
adjacency matrixes of graphs to compute the path numbers, which are metrics of partition.

The adjacency matrixes of G and H are showed in (1) (Label as in Fig.1).

G
V2

V1

V3

V4

V5

V6

V7 V10

V9 V8

H

U2

U1

U3 U4

U6

U7 U9

U10

U5

U8

298

0010010010
0010001001
1101000000
0010100100
0001010001
1000101000
0100010100
0001001010
1000000101
0100100010

0011001000
0001100100
1000100010
1100000001
0110010000
0000101001
1000010100
0100001010
0010000101
0001010010

 (1)

A(G) B(H)
Then, to get numbers of Length-2 path, the matrixes are multiplied by themselves. The products

of A(G)(2) and B(H)(2) are showed in (2).

3101101101
1301110110
0030111111
1103011011
1110301110
0111030111
1011103011
1110110301
0111111030
1011011103

3100110111
1310011011
0131011101
0013111110
1001301111
1111030110
0111103011
1011110301
1101111030
1110101103

 (2)

A(G)(2) B(H)(2)
Clearly, it is not enough to partition vertices by a length-2 path-number. To reduce the number of

path while length is longer, every time we take the diagonal elements of the length-L matrix out to
another matrix as showed in (8). The remaining of the matrixes is showed in (3), which named as
C(G) and D(H).

0101101101
1001110110
0000111111
1100011011
1110001110
0111000111
1011100011
1110110001
0111111000
1011011100

0100110111
1010011011
0101011101
0010111110
1001001111
1111000110
0111100011
1011110001
1101111000
1110101100

 (3)

C(G)(2) D(H)(2)
The next step is that matrixes C and D multiply A and B respectively, and the diagonal elements

of the products are taken out to matrix in (8), the remaining are showed in (4).

0222222222
2022222222
2202222222
2220222222
2222022222
2222202222
2222220222
2222222022
2222222202
2222222220

0222222222
2022222222
2202222222
2220222222
2222022222
2222202222
2222220222
2222222022
2222222202
2222222220

 (4)

C(G)(3) D(H)(3)
Continuing this procedure until the length is 9, the matrixes are showed in (5) and (6).

0896656656896896656896896896
8960896656656896896656896896
6568960896656896896896656896
6566568960896896896896896656
8966566568960656896896896896
8968968968966560656896896656
6568968968968966560656896896
8966568968968968966560656896
8968966568968968968966560656
8968968966568966568968966560

 (5)

C(G)(9)

0896656896896656896896656896
8960656896896896656896896656
6566560656896896896896896896
8968966560656896896656896896
8968968966560656896896896656
6568968968966560656896896896
8966568968968966560656896896
8968968966568968966560656896
6568968968968968968966560656
8966568968966568968968966560

 (6)

D(G)(9)

299

Clearly, the origin matrix of graph is dependent on the labeling method, so the products would
dependent on it also. We sort the product to get a matrix which is independent of labeling order.
Firstly, every column is sorted respectively, then all columns are sorted. The sorted length-9
path-number matrixes of G and H are showed in (7). There is only one matrix in (7), because they
are the same one.

0000000000
656656656656656656656656656656
656656656656656656656656656656
656656656656656656656656656656
896896896896896896896896896896
896896896896896896896896896896
896896896896896896896896896896
896896896896896896896896896896
896896896896896896896896896896
896896896896896896896896896896

 (7)

SC(G)(9) (SD(G)(9))
Then we can partition the vertices by the matrix in (7), if the columns are not equal, the vertices

are divided into different cells, or in the same. But sometimes there are not similar vertices into a cell,
so we use matrix of the diagonal elements, DE as in (8), to refine the partition.

7207207207207207207207207207209
2642642642642642642642642642648
969696969696969696967
363636363636363636366
121212121212121212125
66666666664
00000000003
33333333332

10987654321

 (8)

DE(diagonal elements)
Here, DE of G and H are a same one. A column denotes a vertex, and the i-row means it is from

matrix of length-i.
Finally, after this process, we can get a partition for each graph, if the partition is discrete, we can

compare the graphs for isomorphism testing, and else a dynamic mapping procedure is needed.

3.3 Dynamic mapping procedure

As an example, the mapping procedure of G in Fig.1 is illustrated. We got a partition of G by the
method described in subsection B, which is showed in (9).

10987654321
10101010101010101010
1111111111

 (9)

The first row of the matrix in (9) means the serial number of the cells, the second is number of
vertices in each cell, and the last row is vertex label.

In (9), there is a trivial partition which has only one cell with all vertices. It means that all vertices
in G are similar.

Then we take a dynamic mapping procedure to partition all similar vertices. Firstly, we choose
any of vertices in a cell, then use the matrixes in (7) and (8) to refine all other vertices. The process
continues in this way, until all cells are trivial.

Usually, we choose the first vertex in the cell to refine, e.g. vertex 1 is selected in (9). Then the
first and the second row of the matrix are reset, as showed in (10).

10987654321
9999999991
2222222221

 (10)

To reduce the complexity, a matrix of shortest path is used. Then, according this matrix and those
in (7) and (8), refine all other vertices (2~10), and get a matrix as in (11).

10986437521
6666663331
3333332221

 (11)

300

Every time the matrix gotten by the refine process must be sorted by the first row, i.e., the value
of the cell.

There are 3 cells in (11), the first has only one vertex, the second has 3 and the last has 6. Then
we selected the first vertex (2) in cell 2, and refine all other vertices (5,7,3,4,6,8,9,10). If there is any
cell is not trivial, the procedure would be continuing. The remaining procedure of G is showed in
(12)-(17).

10986437521
6666662211
4444443321

10964758321
6666662211
4444443321

 (12)
10964758321
6666661111
5555554321

10675948321
4444221111
6666554321

 (13)

10675948321
4444221111
6666554321

10675948321
4444221111
6666554321

 (14)
75941068321
4444221111
6666554321

75941068321
4444111111
7777654321

 (15)

74591068321
2222111111
8877654321

74591068321
2222111111
8877654321

 (16)
59741068321
2222111111
8877654321

59741068321
2211111111
9987654321

 (17)
Finally, we got a discrete partition as in (18), which has 10 trivial cells.

95741068321
1111111111

10987654321

 (18)

Then we got a sorted sequence of vertices for graph G: (1,2,3,8,6,10,4,7,5,9). In the same way we
can sort the vertices of H and get a sorted sequence: (1,2,3,10,5,8,7,9,6,4).

Compare G and H by these two sequences, we find there is a bijection between them, so G≌H.
The map (V1V2V3V8V6V10V4V7V5V9→U1U2 U3U10U5U8U7 U9U6U4) is isomorphism.

3.4 Algorithm

More formally, AGIPN is described as follows:
Algorithm1: AGIPN
INPUT: G,H
OUTPUT: the map if G≌H, or G!≌H
1: set isomorphism=True
2: label vertices get two sequences LG,LH, set

SG=SH=0
3: SG=Sort(G,LG), SH=Sort(H,LH)
4: if(G(SG) !=H(SH))

isomorphism=False
5: return isomorphism, SG, SH
Algorithm2: Sort
INPUT: G, LG
OUTPUT: SG
1: set k=1,l=2, sorted=false
2: G1=G; MSP=SHORTESTPATH(G);
3: while (1<l<n) do
4: G1=G1*G; DE(l)=DIAG(G1);
5: Set the diagonal elements of G1 to be zero;
6: l=l+1
7: end while
8: SG = partition(G, G1); SG =refine(SG, DE);
9: while (sorted==false) do
10: let PGi be the smallest unsorted cell, set

v1∈PGi , SG(k)=l(v1), PGi={PGi-v1} ,
k=k+1, if k=|V(G)|, sorted=true, exit

11: SG =refine2(SG, MSP,G1,DE);
12: end while
13: Return SG

301

4. Results and Discussion

4.1 Implementation and results

The graphs we used to test AGIPN include: random connected graphs, k-regular graphs, regular
rings and regular 2D meshes.

Random connected graphs are denoted by average degree, i.e., a k-random graph means there are
k*n/2 edges in it, where n is the number of vertices.

A regular ring is a graph of n vertices, each connected to its 2K nearest neighbours.
We tested the correctness of AGIPN by a way that labeled the graph twice randomly, then got two

difference adjacency matrixes, and tested them, each graph 100 times. The way shows that AGIPN is
correct for all those graphs with no more than 6 degree and 1000 vertices.

Then, we tested the time requirement of AGIPN on such graphs (each type with the same vertices
100 graphs): 3-random, 3-regular, 6-random, 6-regular and 6-regular ring, 2D meshes. The first two
graphs are tested up to 1000 vertices, showed in Fig.2, and the others only up to 100 vertices,
showed in Fig.3.

4.2 Analysis and discussion

AGIPN sort graphs by the path number, which are computed by matrix multiplication. The
complexity of matrix multiplication is O(n3), and other process all are no more than O(n3). There
need no more than (n-1) times to compute path-number of maximum length (n-1), so the complexity
is no more than O(n4).

But AGIPN is restricted by the path number, which increases rapidly with the degree and the
length, though we used a method to reduce the value of path-number.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Vertex number of Graphs

Ti
m

es
[s

ec
]

rd03
rg03

Fig.2 times of 3-random and 3-regular graphs

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Vertex number of graphs

Ti
m

es
[s

ec
]

rd06
rg06
lt06
2dms

Fig.3 times of 6-random, 6-regular,

6-lattice ,2D meshes

5. Conclusion

In this paper, we proposed an algorithm for GI (AGIPN). Firstly AGIPN labeled graphs randomly,
then partitioned each graph by path number and refined by a dynamic mapping procedure, then get
two sorted sequences of label. Two graphs were compared by the sorted sequences, if they are equal,
the graphs are isomorphism and the two sequences are isomorphism map, or else they are not
isomorphism.

Then, we tested the algorithm on graphs such as: random connected graphs, k-regular graphs,
regular rings and regular 2D meshes. The results show that AGIPN has polynomial time complexity
on those types of graphs with no more than 6 degree and 1000 vertices.

302

But AGIPN is restricted by the large path numbers. Testing on other types of graphs and dealing
with the large path numbers will be our works in the future.

References

[1] Kandel, Abraham, Bunke, eds. Applied Graph Theory in Computer Vision and Pattern Recognition, Springer, Berlin
Heidelberg, New York, 2007. ISBN: 978-3-540-68019-2.
[2] Foggia P, Sansone C, Vento M. “A performance comparison of five algorithms for graph isomorphism”. In: Jolion
JM, Kropatsch W, Vento M, eds. Proc.of the 3rd IAPR-TC15 Int’l Workshop on Graph-Based Representation in Pattern
Recognition. Ischia, 2001. pp. 188-199. http://amalfi.dis.unina.it/graph/db/ papers/benchmark.pdf.
[3] J. P. Bagrow1, E. M. Bollt2,1, J. D. Skufca2 and D. ben-Avraham1 . “Portraits of complex networks”, EPL 81
68004, 2008. doi: 10.1209/0295-5075/81/68004.
[4] J.A. Bondy and U.S.R. Murty. Graph theory, Springer, 2008. ISBN: 978-1-84628-969-9, doi: 10.1007/978-
1-84628-970-5.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP Completeness, Freeman &
co., New York, 1990. ISBN:0-7167-1044-7.
[6] McKay BD. “Practical graph isomorphism”. Congressus Numerantium, 1981, 30(1), pp.45-87.
[7] Ullmann JR. An algorithm for subgraph isomorphism.Journal of the Association for Computing Machinery,
1976,23(1), pp.31-42.
[8] Cordella LP,Foggia P,Sansone C,Vento M.An improved algorithm for matching large graphs.In:Jolion JM,
Kropatsch W, Vento M,eds.Proc.of the 3rd IAPR-TC15 Int’l Workshop on Graph-Based Representation in Pattern
Recognition. Ischia, 2001. pp.149-159. http://amalfi.dis.unina.it/graph/db/papers/ vfalgorithm.pdf

303

http://dx.doi.org/10.1209/0295-5075/81/68004

